Overview of the JET preparation for deuterium–tritium operation with the ITER like-wall
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F19%3A00555277" target="_blank" >RIV/61389021:_____/19:00555277 - isvavai.cz</a>
Result on the web
<a href="https://iopscience.iop.org/article/10.1088/1741-4326/ab2276" target="_blank" >https://iopscience.iop.org/article/10.1088/1741-4326/ab2276</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1741-4326/ab2276" target="_blank" >10.1088/1741-4326/ab2276</a>
Alternative languages
Result language
angličtina
Original language name
Overview of the JET preparation for deuterium–tritium operation with the ITER like-wall
Original language description
For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D–T mixtures since 1997 and the first ever D–T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D–T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D–T preparation. This intense preparation includes the review of the physics basis for the D–T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D–T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfvèn eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D–T campaign provides an incomparable source of information and a basis for the future D–T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nuclear Fusion
ISSN
0029-5515
e-ISSN
1741-4326
Volume of the periodical
59
Issue of the periodical within the volume
11
Country of publishing house
AT - AUSTRIA
Number of pages
16
Pages from-to
112021
UT code for WoS article
000484122200001
EID of the result in the Scopus database
2-s2.0-85070875113