All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Investigation of the initial phases of nanosecond discharges in liquid water

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F20%3A00531307" target="_blank" >RIV/61389021:_____/20:00531307 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/20:00114468

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1361-6595/ab87b7" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/ab87b7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/ab87b7" target="_blank" >10.1088/1361-6595/ab87b7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Investigation of the initial phases of nanosecond discharges in liquid water

  • Original language description

    In this work, we examine initial phases of micro-discharges produced in deionised water by high-voltage (HV) pulses of nanosecond duration. We apply opto-electrical diagnostics with extremely high temporal (down to 30 ps) as well as spatial (down to 1 μm) resolution. Frozen interferometric and shadowgraph images show three distinct events. The first, the subcritical (no-discharge) event, is characterised by periodic perturbations of the index of refraction which depart from the anode surface and are pulled away at the speed of sound as an expanding envelope defined by the shape of the anode tip. One-dimensional hydrodynamic modelling of the subcritical phase under conditions mimicking curvatures of real anode tips reveals basic characteristics of perturbations caused by dynamic balance between the hydrostatic and electrostrictive pressures consistent with experimental observations. The second, the dark or non-luminous discharge event, is characterised by the onset of a few isolated very tiny tree-like structures growing from the anode tip. Depending on the HV amplitude, the initial structures occur with a delay of ∼2-3 ns after onset of the HV pulse and subsequently expand with average velocity of ∼1 ± 105-2 ± 105 m s-1, creating very dense bush-like structures made of thin hair-like filaments in a few nanoseconds. The third, the luminous discharge event, follows (nearly simultaneously) the dark discharge event and unveils much simpler tree-like morphology determined by the extension of non-luminous bush-like structures. Characteristic dimensions of observed events range from about 1 μm (typical diameter of non-luminous filaments) to tens of micrometres (characteristic diameters of luminous filaments). Furthermore, we address a possible role of microbubbles developing in the anode region due to the periodic HV pulses and verify that the UV-vis-NIR spectrometric signatures of the luminous phase notably change when replacing non-degassed deionised water with degassed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/GA18-04676S" target="_blank" >GA18-04676S: Fundamental phenomena of nanosecond discharge in liquid water</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plasma Sources Science & Technology

  • ISSN

    0963-0252

  • e-ISSN

  • Volume of the periodical

    29

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    17

  • Pages from-to

    064001

  • UT code for WoS article

    000575399800001

  • EID of the result in the Scopus database

    2-s2.0-85087106326