All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Real-time plasma position reflectometry system development and integration on COMPASS tokamak

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F20%3A00534527" target="_blank" >RIV/61389021:_____/20:00534527 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0920379620305652?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0920379620305652?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fusengdes.2020.112017" target="_blank" >10.1016/j.fusengdes.2020.112017</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Real-time plasma position reflectometry system development and integration on COMPASS tokamak

  • Original language description

    O-mode frequency-modulated continuous wave (FMCW) reflectometry provides an alternative to magnetic measurements in the determination of the plasma separatrix position for plasma position control. This type of measurement proves to be particularly attractive for the control of future fusion reactors where the harsh radiation environment may damage magnetic probes or induce non-compensable measurement drifts. Plasma position reflectometry (PPR), first demonstrated in ASDEX-Upgrade, is a control technique that is increasingly important to validate in diversified experimental devices and relevant plasma regimes. The COMPASS tokamak provides suitable conditions for such advanced demonstrations and regular PPR operation and development, thanks to its O-mode reflectometer and Multi-Threaded Application Real-Time executor (MARTe) based real-time control system. Herein we present the integration of a PPR system on COMPASS, both at hardware and software levels. Reflectometry swept measurements require signals to be acquired in bursts of data and streamed to the corresponding MARTe-PPR node through PCIe® fibre-optic links. The data transferred in real-time is used to reconstruct the radial density profiles from which the outer separatrix position is estimated. This estimate is then delivered to the central MARTe controller node via a dedicated Xilinx® Aurora® link at a rate matching COMPASS's 500 μs slow control cycle. The implemented system systematically met the required latency specifications, being able to deliver an estimation of the plasma radial position capable of successfully replacing the corresponding magnetic measurements in the plasma position feedback control loops.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fusion Engineering and Design

  • ISSN

    0920-3796

  • e-ISSN

  • Volume of the periodical

    160

  • Issue of the periodical within the volume

    November

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    11

  • Pages from-to

    112017

  • UT code for WoS article

    000588143300085

  • EID of the result in the Scopus database

    2-s2.0-85091996338