Thermal barrier coatings with novel architectures for diesel engine applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F20%3A00540267" target="_blank" >RIV/61389021:_____/20:00540267 - isvavai.cz</a>
Result on the web
<a href="https://reader.elsevier.com/reader/sd/pii/S0257897220306198?token=7F625F0E59472EC0B86FE0BA8812042AECBC45C7AE47508840B965EB4FF29CFBEF6B7CF3D178289B48D4C5BED22509AE" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0257897220306198?token=7F625F0E59472EC0B86FE0BA8812042AECBC45C7AE47508840B965EB4FF29CFBEF6B7CF3D178289B48D4C5BED22509AE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.surfcoat.2020.125950" target="_blank" >10.1016/j.surfcoat.2020.125950</a>
Alternative languages
Result language
angličtina
Original language name
Thermal barrier coatings with novel architectures for diesel engine applications
Original language description
The increased demands for higher efficiency and environmentally friendly diesel engines have led to a continuous search for new coating processing routes and new ceramic materials that can provide the required properties when applied on engine components such as pistons and exhaust manifolds. Although successful in gas turbine applications, thermal barrier coatings (TBCs) produced by suspension plasma spraying (SPS) processes have not been employed so far in the automotive industry. This work aims to achieve a better understanding of the role of thermal conductivity and thermal effusivity on the durability of SPS TBCs applied to pistons of diesel engines. Three different coating architectures were considered for this study. The first architecture was yttria-stabilized zirconia (YSZ) lamellar top coat deposited by APS (Atmospheric Plasma Spray) and used as a reference sample in this study. The second architecture was a columnar SPS top coat of either YSZ or gadolinium zirconate (GZO) while the third architecture was an SPS columnar top coat, “sealed” with a dense sealing layer deposited on the top coat. Two types of sealing layers were used, a metallic (M) or a ceramic thermal spray layer (C). Laser Flash Analysis (LFA) was used to determine the thermal conductivity and thermal effusivity of the coatings. Two different thermal cyclic tests were used to test the TBCs behavior under cyclic thermal loads. Microstructure analysis before and after the thermal cyclic tests were performed using SEM in different microstructures and materials. The thermal cyclic test results were correlated with coatings microstructure and thermophysical properties. It was observed that the columnar coatings produced by SPS had an enhanced service life in the thermal cyclic tests as compared to the APS coatings.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Surface and Coatings Technology
ISSN
0257-8972
e-ISSN
—
Volume of the periodical
396
Issue of the periodical within the volume
August
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
125950
UT code for WoS article
000540175000022
EID of the result in the Scopus database
2-s2.0-85085597713