All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Thermal barrier coatings with novel architectures for diesel engine applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F20%3A00540267" target="_blank" >RIV/61389021:_____/20:00540267 - isvavai.cz</a>

  • Result on the web

    <a href="https://reader.elsevier.com/reader/sd/pii/S0257897220306198?token=7F625F0E59472EC0B86FE0BA8812042AECBC45C7AE47508840B965EB4FF29CFBEF6B7CF3D178289B48D4C5BED22509AE" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0257897220306198?token=7F625F0E59472EC0B86FE0BA8812042AECBC45C7AE47508840B965EB4FF29CFBEF6B7CF3D178289B48D4C5BED22509AE</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.surfcoat.2020.125950" target="_blank" >10.1016/j.surfcoat.2020.125950</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Thermal barrier coatings with novel architectures for diesel engine applications

  • Original language description

    The increased demands for higher efficiency and environmentally friendly diesel engines have led to a continuous search for new coating processing routes and new ceramic materials that can provide the required properties when applied on engine components such as pistons and exhaust manifolds. Although successful in gas turbine applications, thermal barrier coatings (TBCs) produced by suspension plasma spraying (SPS) processes have not been employed so far in the automotive industry. This work aims to achieve a better understanding of the role of thermal conductivity and thermal effusivity on the durability of SPS TBCs applied to pistons of diesel engines. Three different coating architectures were considered for this study. The first architecture was yttria-stabilized zirconia (YSZ) lamellar top coat deposited by APS (Atmospheric Plasma Spray) and used as a reference sample in this study. The second architecture was a columnar SPS top coat of either YSZ or gadolinium zirconate (GZO) while the third architecture was an SPS columnar top coat, “sealed” with a dense sealing layer deposited on the top coat. Two types of sealing layers were used, a metallic (M) or a ceramic thermal spray layer (C). Laser Flash Analysis (LFA) was used to determine the thermal conductivity and thermal effusivity of the coatings. Two different thermal cyclic tests were used to test the TBCs behavior under cyclic thermal loads. Microstructure analysis before and after the thermal cyclic tests were performed using SEM in different microstructures and materials. The thermal cyclic test results were correlated with coatings microstructure and thermophysical properties. It was observed that the columnar coatings produced by SPS had an enhanced service life in the thermal cyclic tests as compared to the APS coatings.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Surface and Coatings Technology

  • ISSN

    0257-8972

  • e-ISSN

  • Volume of the periodical

    396

  • Issue of the periodical within the volume

    August

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

    125950

  • UT code for WoS article

    000540175000022

  • EID of the result in the Scopus database

    2-s2.0-85085597713