All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Modelling of charge-exchange induced NBI losses in the COMPASS upgrade tokamak

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F21%3A00555329" target="_blank" >RIV/61389021:_____/21:00555329 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1741-4326/abd41b" target="_blank" >https://iopscience.iop.org/article/10.1088/1741-4326/abd41b</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1741-4326/abd41b" target="_blank" >10.1088/1741-4326/abd41b</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Modelling of charge-exchange induced NBI losses in the COMPASS upgrade tokamak

  • Original language description

    The COMPASS upgrade tokamak (Panek et al 2017 Fusion Eng. Des. 123 11-16) will be a tokamak of major radius R 0 = 0.894 m with the possibility to reach high field (B t ∼ 5 T) and high current (I p ∼ 2 MA). The machine should see its first plasma in 2023 and H-mode plasma will be obtained from 2025. The main auxiliary heating system used to access H-mode will be 4 MW of neutral beam injection (NBI) power. The NBI will have a nominal injection energy of 80 keV, a maximum injection radius R tan = 0.65 m and will create a population of well-confined energetic D ions. In this contribution, our modelling studies the NBI deposition and losses when a significant edge background density of neutrals is assumed. We follow the fast ions in the 3D field generated by the 16 toroidal field (TF) coils using the upgraded EBdyna orbit solver (Jaulmes et al 2014 Nucl. Fusion 54 104013). We have implemented a Coulomb collision operator similar to that of NUBEAM (Goldston et al 1981 J. Comput. Phys. 43 61) and a charge-exchange operator that follows neutrals and allows for multiple re-ionizations. Detailed integrated modelling with the METIS code (Artaud et al 2018 Nucl. Fusion 58 105001) yields the pressure and current profiles for various sets of achievable engineering parameters. The FIESTA code (Cunningham 2013 Fusion Eng. Des. 88 3238-3247) calculates the equilibrium and a Biot-Savart solver is used to calculate the intensity of the perturbation induced by the TF coils. Initial distributions of the NBI born fast ions are obtained from the newly developed NUR code, based on Suzuki et al (1998 Plasma Phys. Control. Fusion 40 2097). We evolve the NBI ions during the complete thermalization process and we calculate the amount of NBI ions loss in the edge region due to neutralizations. Results indicate the NBI losses for various injection geometries, various engineering parameters and various assumptions on the magnitude of the background neutral densities.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000768" target="_blank" >EF16_019/0000768: COMPASS-U: Tokamak for cutting-edge fusion research</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nuclear Fusion

  • ISSN

    0029-5515

  • e-ISSN

    1741-4326

  • Volume of the periodical

    61

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    AT - AUSTRIA

  • Number of pages

    18

  • Pages from-to

    046012

  • UT code for WoS article

    000629139400001

  • EID of the result in the Scopus database

    2-s2.0-85103192633