All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Latest results of Eurofusion plasma-facing components research in the areas of power loading, material erosion and fuel retention

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F22%3A00554369" target="_blank" >RIV/61389021:_____/22:00554369 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1741-4326/ac2a6a" target="_blank" >https://iopscience.iop.org/article/10.1088/1741-4326/ac2a6a</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1741-4326/ac2a6a" target="_blank" >10.1088/1741-4326/ac2a6a</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Latest results of Eurofusion plasma-facing components research in the areas of power loading, material erosion and fuel retention

  • Original language description

    The interaction between the edge-plasma in a fusion reactor and the surrounding first-wall components is one of the main issues for the realisation of fusion energy power plants. The EUROfusion Work Package on plasma-facing components addresses the key areas of plasma-surface interaction in view of ITER and DEMO operation, which are mostly related to material erosion, surface damage and fuel retention. These aspects are both investigated experimentally (in tokamaks, linear plasma devices and lab experiments) and by modelling. Here, selective results regarding the main research topics are presented: in the area of tungsten (W) surface modifications, the interplay between W fuzz formation and W fuzz erosion depends strongly on the local plasma and surface conditions, as demonstrated by tokamak experiments. Complementary, experimental findings on the dependence of erosion on the surface structure in lab-scale experiments have led to the successful implementation of surface structure effects in numerical modelling. The qualification of ITER-like monoblocks at high fluences of up to 10(31) D m(-2) in linear plasma facilities has shown no visible damages at cold plasma conditions. However, experiments with simultaneous plasma and pulsed heat loading (edge-localized modes simulations) show that synergistic effects can lower the W damage thresholds. Additionally, fuel retention studies show that nitrogen as a plasma impurity increases the fuel retention in W, and that deuterium implanted in the surface of W is capable of stabilizing displacement damages caused by neutron damage. Finally, the implications of these results on ITER and DEMO operation are discussed and an outlook on follow-up experiments is given: the results indicate that there are possible impacts on the ITER divertor lifetime and tritium removal. Other areas like the divertor shaping and the erosion need additional investigations in the future to quantify the impact on ITER and DEMO operation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nuclear Fusion

  • ISSN

    0029-5515

  • e-ISSN

    1741-4326

  • Volume of the periodical

    62

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    AT - AUSTRIA

  • Number of pages

    10

  • Pages from-to

    042013

  • UT code for WoS article

    000752591700001

  • EID of the result in the Scopus database

    2-s2.0-85125596808