All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Atmospheric pressure Townsend discharge in pure nitrogen A test case for N<inf>2</inf>( A 3 ς u + , v ) kinetics under low E/ N conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F22%3A00565854" target="_blank" >RIV/61389021:_____/22:00565854 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1361-6595/ac7ad1" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/ac7ad1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/ac7ad1" target="_blank" >10.1088/1361-6595/ac7ad1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Atmospheric pressure Townsend discharge in pure nitrogen A test case for N<inf>2</inf>( A 3 ς u + , v ) kinetics under low E/ N conditions

  • Original language description

    This work investigates the kinetics of the N2( A3ςu+,v ) state in the atmospheric-pressure Townsend discharge (APTD) operated in a barrier discharge setup in pure nitrogen. To understand the complex nature of the N2( A3ςu+,v ) state we have developed a detailed state-to-state vibrational kinetic model of N2 applicable mainly at low reduced electric fields ( < 200 Td). The kinetic model benefits from the determination of the electric field and the electron density profile using the equivalent electric circuit analysis. The knowledge of both parameters significantly reduces the number of free parameters of the model and thus improves the accuracy of kinetic predictions. The results of the kinetic model are compared with the measured emission spectra of the second positive system and the Herman infrared system of N2. The use of the sensitivity analysis method leads to a better understanding of the role of specific elementary processes in the APTD mechanism and also to the determination of the density of the two lowest vibrational levels of N2( A3ςu+ ), which varies between 1012 and 1014 cm-3 depending on the applied voltage. The determination is important, because the two lowest vibrational levels of N2( A3ςu+ ) are considered to play an important role in the secondary emission of electrons from dielectric surfaces. This work shows that the complex state-to-state kinetic modeling in combination with the phase-resolved emission spectroscopy is the key to a better understanding of the processes responsible for establishing and sustaining the APTD mechanism in nitrogen.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/GA15-04023S" target="_blank" >GA15-04023S: Advanced Research of Kinetic Processes in Streamer Discharges</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plasma Sources Science & Technology

  • ISSN

    0963-0252

  • e-ISSN

    1361-6595

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    22

  • Pages from-to

    084004

  • UT code for WoS article

    000841605600001

  • EID of the result in the Scopus database

    2-s2.0-85136642482