All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Conceptual design of Fiber Bragg Grating temperature sensors for heat load measurements in COMPASS-U plasma-facing components

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F23%3A00573324" target="_blank" >RIV/61389021:_____/23:00573324 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/23:00369375 RIV/00216208:11320/23:10468488

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0920379623001928?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0920379623001928?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fusengdes.2023.113608" target="_blank" >10.1016/j.fusengdes.2023.113608</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Conceptual design of Fiber Bragg Grating temperature sensors for heat load measurements in COMPASS-U plasma-facing components

  • Original language description

    Information about the temperature of plasma-facing components is important for a reliable tokamak operation. A temperature monitoring system using Fiber Bragg Grating (FBG) sensors is foreseen for the new tokamak COMPASS Upgrade, which is currently starting its construction. This diagnostic can be a valuable complement to IR thermography, thermocouples, and Langmuir probe divertor diagnostics. The system will be optimized to estimate the steady-state and transient heat loads, such as runaway electrons, on the divertor and limiters. In this contribution, current progress in the design of the FBG sensors for the COMPASS-U initial open divertor and guard limiters is presented. The heat flux on the plasma-facing components is modeled for diverted and first phase circular plasma scenarios by the PFCFlux code. The subsequent heating and the mechanical strain in the components dedicated for the placement of the sensors is simulated by the finite element analysis software ANSYS. Using these results, the optimal placement and configuration of the sensors are determined with respect to the anticipated maximum temperature and gradients.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10304 - Nuclear physics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fusion Engineering and Design

  • ISSN

    0920-3796

  • e-ISSN

    1873-7196

  • Volume of the periodical

    193

  • Issue of the periodical within the volume

    August

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    6

  • Pages from-to

    113608

  • UT code for WoS article

    000982665500001

  • EID of the result in the Scopus database

    2-s2.0-85151784233