Deep learning for laser beam imprinting
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F23%3A00583382" target="_blank" >RIV/61389021:_____/23:00583382 - isvavai.cz</a>
Alternative codes found
RIV/68378271:_____/23:00573225 RIV/68407700:21230/23:00366750 RIV/00216208:11320/23:10468368
Result on the web
<a href="https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-12-19703&id=531063" target="_blank" >https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-12-19703&id=531063</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1364/OE.481776" target="_blank" >10.1364/OE.481776</a>
Alternative languages
Result language
angličtina
Original language name
Deep learning for laser beam imprinting
Original language description
Methods of ablation imprints in solid targets are widely used to characterize focused X-ray laser beams due to a remarkable dynamic range and resolving power. A detailed description of intense beam profiles is especially important in high-energy-density physics aiming at nonlinear phenomena. Complex interaction experiments require an enormous number of imprints to be created under all desired conditions making the analysis demanding and requiring a huge amount of human work. Here, for the first time, we present ablation imprinting methods assisted by deep learning approaches. Employing a multi-layer convolutional neural network (U-Net) trained on thousands of manually annotated ablation imprints in poly(methyl methacrylate), we characterize a focused beam of beamline FL24/FLASH2 at the Free-electron laser in Hamburg. The performance of the neural network is subject to a thorough benchmark test and comparison with experienced human analysts. Methods presented in this Paper pave the way towards a virtual analyst automatically processing experimental data from start to end.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10306 - Optics (including laser optics and quantum optics)
Result continuities
Project
<a href="/en/project/GA20-08452S" target="_blank" >GA20-08452S: Towards AbloCAM: fundamental approaches to automated ablation-desorption imprinting of focused X-ray laser beams</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Optics Express
ISSN
1094-4087
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
19703-19721
UT code for WoS article
001026189200003
EID of the result in the Scopus database
2-s2.0-85163592913