All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mitigation of divertor edge localised mode power loading by impurity seeding

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F23%3A00584141" target="_blank" >RIV/61389021:_____/23:00584141 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1741-4326/acf4aa" target="_blank" >https://iopscience.iop.org/article/10.1088/1741-4326/acf4aa</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1741-4326/acf4aa" target="_blank" >10.1088/1741-4326/acf4aa</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mitigation of divertor edge localised mode power loading by impurity seeding

  • Original language description

    One of the major challenges for the design of future thermonuclear reactors is the problem of power exhaust—the removal of heat fluxes deposited by plasma particles onto the plasma-facing components (PFCs) of the reactor wall. In order for the reactor to work efficiently, the power loading of the PFCs has to stay within their material limits. A substantial part of these heat fluxes can be deposited transiently during the impact of edge localised modes (ELMs), which typically accompany the high confinement mode, a regime foreseen for tokamak ITER and next-step devices. One of the possible ways to mitigate the deposition of localised heat fluxes during ELMs is injection of impurities, which could similarly to inter-ELM detachment dissipate part of the energy carried by plasma particles, the so-called ELM buffering effect. In this contribution, we report on experimental observations in impurity seeded discharges in ASDEX Upgrade, where injection of argon is capable of reducing the ELM energy by up to 80 % (60 % without degradation of confinement). A simple model of ELM cooling is in some cases capable of providing quantitative prediction of this effect. The ELM peak energy fluence ϵ | | , p e a k was reduced by a factor 8 without a degradation of the pedestal pressure. Should such mitigation be achieved in ITER, the resulting power loading would satisfy the material limits of divertor tungsten monoblocks (Eich et al 2017 Nucl. Mater. Energy 12 84-90) and as such avoid the risk of their melting. The most favourable results in terms of confinement and divertor heat flux mitigation were achieved by use of a mixture of argon and nitrogen, where the later impurity helped to improve the confinement. The ELM frequency was identified as a scaling factor for ϵ | | , p e a k in discharges with impurity seeding, suggesting that high frequency ELMs are favourable for future devices.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nuclear Fusion

  • ISSN

    0029-5515

  • e-ISSN

    1741-4326

  • Volume of the periodical

    63

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    126018

  • UT code for WoS article

    001073366400001

  • EID of the result in the Scopus database

    2-s2.0-85174270451