All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Performance Analysis of Floating Structures in Solar-Powered Desalination

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F24%3A00585689" target="_blank" >RIV/61389021:_____/24:00585689 - isvavai.cz</a>

  • Alternative codes found

    RIV/60461373:22320/24:43930388

  • Result on the web

    <a href="https://www.mdpi.com/1996-1073/17/3/621" target="_blank" >https://www.mdpi.com/1996-1073/17/3/621</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/en17030621" target="_blank" >10.3390/en17030621</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Performance Analysis of Floating Structures in Solar-Powered Desalination

  • Original language description

    Solar desalination employs direct sunrays in order to evaporate water vapor and collect the condensed water, making it an effective solution to combat water scarcity. In this experimental study, a solar still with a floating absorber is placed on the water, which acts as a heat absorber and is used to stop the heat conducting to the condensed water present in the still. Stainless steel, with thickness of 0.05 mm and dimensions of 500 mm × 500 mm, is used - this is coated with a Cr-Mn-Fe oxide nanocoating, and a wooden frame is attached to the sheet in order to maintain the balance, allowing the still to float at a constant depth on the water. The experiment is conducted on three different levels of water (3 cm, 4 cm, and 5 cm) using a conventional solar still (CSS) and a modified solar still (MSS) under the same climatic circumstances. The total distillate for depths of 3 cm, 4 cm, and 5 cm are 390 mL, 385 mL, and 385 mL, respectively for the MSS - the depths were 250 mL, 220 mL, and 205 mL, respectively, for the CSS. Upon comparison, the MSS performed better than the CSS by 56% at the 3 cm depth of water, 75% at the 4 cm depth of water, and 87% at the 5 cm depth of water. It was deduced that desalinated water for the MSS was 15.6% more cost-effective than for the CSS, and it was also 81% more cost-effective than packaged drinking water in India.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energies

  • ISSN

    1996-1073

  • e-ISSN

    1996-1073

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

    621

  • UT code for WoS article

    001160042300001

  • EID of the result in the Scopus database

    2-s2.0-85184659013