All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimizing performance of artificial neural network-based tomography model at golem tokamak: impact of training data quantity and quality

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F24%3A00616842" target="_blank" >RIV/61389021:_____/24:00616842 - isvavai.cz</a>

  • Result on the web

    <a href="https://ojs.cvut.cz/ojs/index.php/PPT/article/view/9980/7184" target="_blank" >https://ojs.cvut.cz/ojs/index.php/PPT/article/view/9980/7184</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimizing performance of artificial neural network-based tomography model at golem tokamak: impact of training data quantity and quality

  • Original language description

    The paper presents an Artificial Neural Network (ANN)-based model for the tomography reconstruction of visible plasma radiation distribution at the GOLEM tokamak. To train the model, the training dataset is constructed using emissivity phantoms with associated synthetic measurements from one poloidal cross-section of the GOLEM tokamak. The trained model is validated by the test dataset. The performance optimization of the ANN-based model is investigated by considering the effect of the quantity and quality of the training data.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů