Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in Tobacco pollen tubes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F17%3A00476519" target="_blank" >RIV/61389030:_____/17:00476519 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11310/17:10359972
Result on the web
<a href="http://dx.doi.org/10.1104/pp.16.01709" target="_blank" >http://dx.doi.org/10.1104/pp.16.01709</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1104/pp.16.01709" target="_blank" >10.1104/pp.16.01709</a>
Alternative languages
Result language
angličtina
Original language name
Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in Tobacco pollen tubes
Original language description
The vesicle-tethering complex exocyst is one of the crucial cell polarity regulators. The EXO70 subunit is required for the targeting of the complex and is represented by many isoforms in angiosperm plant cells. This diversity could be partly responsible for the establishment and maintenance of membrane domains with different composition. To address this hypothesis, we employed the growing pollen tube, a well-established cell polarity model system, and performed large-scale expression, localization, and functional analysis of tobacco (Nicotiana tabacum) EXO70 isoforms. Various isoforms localized to different regions of the pollen tube plasma membrane, apical vesicle-rich inverted cone region, nucleus, and cytoplasm. The overexpression of major pollen-expressed EXO70 isoforms resulted in growth arrest and characteristic phenotypic deviations of tip swelling and apical invaginations. NtEXO70A1a and NtEXO70B1 occupied two distinct and mutually exclusive plasma membrane domains. Both isoforms partly colocalized with the exocyst subunit NtSEC3a at the plasma membrane, possibly forming different exocyst complex subpopulations. NtEXO70A1a localized to the small area previously characterized as the site of exocytosis in the tobacco pollen tube, while NtEXO70B1 surprisingly colocalized with the zone of clathrin-mediated endocytosis. Both NtEXO70A1a and NtEXO70B1 colocalized to different degrees with markers for the anionic signaling phospholipids phosphatidylinositol 4,5-bisphosphate and phosphatidic acid. In contrast, members of the EXO70 C class, which are specifically expressed in tip-growing cells, exhibited exocytosis-related functional effects in pollen tubes despite the absence of apparent plasma membrane localization. Taken together, our data support the existence of multiple membranetrafficking domains regulated by different EXO70-containing exocyst complexes within a single cell.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10611 - Plant sciences, botany
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Plant Physiology
ISSN
0032-0889
e-ISSN
—
Volume of the periodical
173
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
1659-1675
UT code for WoS article
000400366900013
EID of the result in the Scopus database
2-s2.0-85014614437