All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Infection by rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F17%3A00476550" target="_blank" >RIV/61389030:_____/17:00476550 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/17:73579603

  • Result on the web

    <a href="http://dx.doi.org/10.1093/aob/mcw202" target="_blank" >http://dx.doi.org/10.1093/aob/mcw202</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/aob/mcw202" target="_blank" >10.1093/aob/mcw202</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Infection by rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen

  • Original language description

    Background and Aims: Pisum sativum L. (pea) seed is a source of carbohydrate and protein for the developing plant. By studying pea seeds inoculated by the cytokinin-producing bacterium, Rhodococcus fascians, we sought to determine the impact of both an epiphytic (avirulent) strain and a pathogenic strain on source-sink activity within the cotyledons during and following germination.nMethods: Bacterial spread was monitored microscopically, and real-time reverse transcription-quantitative PCR was used to determine the expression of cytokinin biosynthesis, degradation and response regulator gene family members, along with expression of family members of SWEET, SUT, CWINV and AAP genes gene families identified initially in pea by transcriptomic analysis. The endogenous cytokinin content was also determined.nKey Results: The cotyledons infected by the virulent strain remained intact and turned green, while multiple shoots were formed and root growth was reduced. The epiphytic strain had no such marked impact. Isopentenyl adenine was elevated in the cotyledon s infected by the virulent strain. Strong expression of RfIPT, RfLOG and RfCKX was detected in the cotyledons infected by the virulent strain throughout the experiment, with elevated expression also observed for PsSWEET, PsSUT and PsINV gene family members. The epiphytic strain had some impact on the expression of these genes, especially at the later stages of reserve mobilization from the cotyledons.nConclusions: The pathogenic strain retained the cotyledons as a sink tissue for the pathogen rather than the cotyledon converting completely to a source tissue for the germinating plant. We suggest that the interaction of cytoki-nins, CWINVs and SWEETs may lead to the loss of apical dominance and the appearance of multiple shoots.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annals of Botany

  • ISSN

    0305-7364

  • e-ISSN

  • Volume of the periodical

    119

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    841-852

  • UT code for WoS article

    000400982600013

  • EID of the result in the Scopus database

    2-s2.0-85018991925