All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Response of Picea abies Somatic Embryos to UV-B Radiation Depends on the Phase of Maturation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F18%3A00497154" target="_blank" >RIV/61389030:_____/18:00497154 - isvavai.cz</a>

  • Alternative codes found

    RIV/68081731:_____/18:00497154

  • Result on the web

    <a href="http://dx.doi.org/10.3389/fpls.2018.01736" target="_blank" >http://dx.doi.org/10.3389/fpls.2018.01736</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fpls.2018.01736" target="_blank" >10.3389/fpls.2018.01736</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Response of Picea abies Somatic Embryos to UV-B Radiation Depends on the Phase of Maturation

  • Original language description

    Ultraviolet-B (UV-B) radiation is a key environmental signal which initiates diverse responses that affect the metabolism, development, and viability of plants. In keeping with our previous studies, we concentrated primarily on how UV-B radiation affects Norway spruce [Picea abies (L.) Karst.] somatic embryo maturation and how phenolics and polyamines (PAs) are linked to the defense response invoked by UV-B irradiation. We treated clusters of Norway spruce embryogenic culture (EC) with UV-B during the five stages of embryo maturation (early, cylindrical, precotyledonary, cotyledonary, and mature embryos). For the first time, we take an advantage of the unique environmental scanning electron microscope AQUASEM II to characterize somatic embryos in their native state. The severity of the irradiation effect on embryonal cell viability was shown to be dependent on the intensity of radiation as well as the stage of embryo development, and might be related to the formation of protoderm. The response of early embryos was characterized by an increase in malondialdehyde (MDA), a marked decrease in PA contents and a decline in phenolics. The reduced ability to activate the defense system seems to be responsible not only for the severe cell damage and decrease in viability but also for the inhibition of embryo development. The significant reduction in spermidine (Spd), which has been reported to be crucial for the somatic embryo development of several coniferous species, may be causally linked to the limited development of embryos. The pronounced decrease in cell wall-bound ferulic acid might correspond to failure of somatic embryos to reach more advanced stages of development. Embryos at later stages of development showed stress defense responses that were more efficient against UV-B exposure.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Plant Science

  • ISSN

    1664-462X

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    27 November

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000451383900001

  • EID of the result in the Scopus database

    2-s2.0-85058820407