All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Role of polyamines in plant growth regulation of Rht wheat mutants

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F19%3A00503808" target="_blank" >RIV/61389030:_____/19:00503808 - isvavai.cz</a>

  • Result on the web

    <a href="http://doi.org/10.1016/j.plaphy.2019.02.013" target="_blank" >http://doi.org/10.1016/j.plaphy.2019.02.013</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.plaphy.2019.02.013" target="_blank" >10.1016/j.plaphy.2019.02.013</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Role of polyamines in plant growth regulation of Rht wheat mutants

  • Original language description

    Besides their protective role, polyamines also serve as signalling molecules. However, further studies are needed to elucidate the polyamine signalling pathways, especially to identify polyamine-regulated mechanisms and their connections with other regulatory molecules. Reduced height (Rht) genes in wheat are often used in breeding programs to increase harvest index. Some of these genes are encoding DELLA proteins playing role in gibberellic acid signalling. The aim of the present paper was to reveal how the mutations in Rht gene modify the polyamine-regulated processes in wheat. Wild type and two Rht mutant genotypes (Rht 1: semi-dwarf- Rht 3: dwarf mutants) were treated with polyamines. Polyamine treatments differently influenced the polyamine metabolism, the plant growth parameters and certain hormone levels (salicylic acid and abscisic acid) in these genotypes. The observed distinct metabolism of Rht 3 may more likely reflect more intensive polyamine exodus from putrescine to spermidine and spermine, and the catabolism of the higher polyamines. The lower root to shoot translocation of putrescine can contribute to the regulation of polyamine pool, which in turn may be responsible for the observed lack of growth inhibition in Rht 3 after spermidine and spermine treatments. Lower accumulation of salicylic acid and abscisic acid, plant hormones usually linked with growth inhibition, in leaves may also be responsible for the diminished negative effect of higher polyamines on the shoot growth parameters observed in Rht 3. These results provide an insight into the role of polyamines in plant growth regulation based on the investigation of gibberellin-insensitive Rht mutants.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plant Physiology and Biochemistry

  • ISSN

    0981-9428

  • e-ISSN

  • Volume of the periodical

    137

  • Issue of the periodical within the volume

    APR

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    14

  • Pages from-to

    189-202

  • UT code for WoS article

    000462106100019

  • EID of the result in the Scopus database

    2-s2.0-85061783787