All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Epigenetic distribution of recombinant plant chromosome fragments in a human–arabidopsis hybrid cell line

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F21%3A00547644" target="_blank" >RIV/61389030:_____/21:00547644 - isvavai.cz</a>

  • Result on the web

    <a href="http://doi.org/10.3390/ijms22115426" target="_blank" >http://doi.org/10.3390/ijms22115426</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ijms22115426" target="_blank" >10.3390/ijms22115426</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Epigenetic distribution of recombinant plant chromosome fragments in a human–arabidopsis hybrid cell line

  • Original language description

    Methylation systems have been conserved during the divergence of plants and animals, although they are regulated by different pathways and enzymes. However, studies on the interactions of the epigenomes among evolutionarily distant organisms are lacking. To address this, we studied the epigenetic modification and gene expression of plant chromosome fragments (~30 Mb) in a human–Arabidopsis hybrid cell line. The whole-genome bisulfite sequencing results demonstrated that recombinant Arabidopsis DNA could retain its plant CG methylation levels even without functional plant methyltransferases, indicating that plant DNA methylation states can be maintained even in a different genomic background. The differential methylation analysis showed that the Arabidopsis DNA was undermethylated in the centromeric region and repetitive elements. Several Arabidopsis genes were still expressed, whereas the expression patterns were not related to the gene function. We concluded that the plant DNA did not maintain the original plant epigenomic landscapes and was under the control of the human genome. This study showed how two diverging genomes can coexist and provided insights into epigenetic modifications and their impact on the regulation of gene expressions between plant and animal genomes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000827" target="_blank" >EF16_019/0000827: Plants as a tool for sustainable global development</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Molecular Sciences

  • ISSN

    1422-0067

  • e-ISSN

    1422-0067

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

    5426

  • UT code for WoS article

    000660187400001

  • EID of the result in the Scopus database

    2-s2.0-85106293642