All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Limited light intensity and low temperature: Can plants survive freezing in light conditions that more accurately replicate the cold season in temperate regions?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F21%3A00551151" target="_blank" >RIV/61389030:_____/21:00551151 - isvavai.cz</a>

  • Alternative codes found

    RIV/68081707:_____/21:00551151 RIV/62156489:43210/21:43919986 RIV/61989592:15310/21:73610707 RIV/00216224:14740/21:00124281

  • Result on the web

    <a href="http://doi.org/10.1016/j.envexpbot.2021.104581" target="_blank" >http://doi.org/10.1016/j.envexpbot.2021.104581</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.envexpbot.2021.104581" target="_blank" >10.1016/j.envexpbot.2021.104581</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Limited light intensity and low temperature: Can plants survive freezing in light conditions that more accurately replicate the cold season in temperate regions?

  • Original language description

    Plants in temperate regions have evolved mechanisms that enable them to survive sudden temperature drops. Experiments with plants grown in long-day conditions, in which they are most sensitive to freezing stress, indicate that the cold acclimation mechanism is light-dependent and does not fully operate under low light intensity. However, winter annuals like Arabidopsis thaliana Col-0 germinate in the fall, overwinter as rosettes, and thus must acclimate under short photoperiods and low irradiance. Thus, we have analysed effects of variations in light intensity in plants grown under short-day photoperiod at the 1.14 growth stage (14 rosette leaves). Plants were acclimated at 4 °C for seven days under control and limited-light conditions: 100 and 20 μmol m-2s-1 photosynthetic photon flux density (PPFD), respectively. All cold-acclimated plants accumulated molecular markers reportedly associated with acquired freezing tolerance, including proline, sucrose, cold-responsive gene transcripts, dehydrins and low temperature-induced proteins. Observed changes (and similarity of freezing stress survival rates of plants in both light conditions) indicate that low PPFD did not inhibit the cold acclimation process. The molecular analysis identified distinct PPFD-specific adaptation mechanisms manifested in contrasting contents of anthocyanins, cytokinin conjugates, photosystem proteins, and enzymes involved in protein, energy, and reactive oxygen species metabolism. Finally, the results identify putative proteins and metabolite markers correlating with susceptibility to freezing stress of non-acclimated plants grown under low PPFD. Our data show that Arabidopsis plants grown under short-day photoperiods can be fully cold-acclimated under limited light conditions, employing standard and PPFD-specific pathways.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Environmental and Experimental Botany

  • ISSN

    0098-8472

  • e-ISSN

    1873-7307

  • Volume of the periodical

    190

  • Issue of the periodical within the volume

    OCT

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    104581

  • UT code for WoS article

    000685009900002

  • EID of the result in the Scopus database

    2-s2.0-85111347020