All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inactivation of the entire Arabidopsis group II GH3s confers tolerance to salinity and water deficit

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F22%3A00562422" target="_blank" >RIV/61389030:_____/22:00562422 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/22:73616452

  • Result on the web

    <a href="https://doi.org/10.1111/nph.18114" target="_blank" >https://doi.org/10.1111/nph.18114</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/nph.18114" target="_blank" >10.1111/nph.18114</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inactivation of the entire Arabidopsis group II GH3s confers tolerance to salinity and water deficit

  • Original language description

    Indole-3-acetic acid (IAA) controls a plethora of developmental processes. Thus, regulation of its concentration is of great relevance for plant performance. Cellular IAA concentration depends on its transport, biosynthesis and the various pathways for IAA inactivation, including oxidation and conjugation. Group II members of the GRETCHEN HAGEN 3 (GH3) gene family code for acyl acid amido synthetases catalysing the conjugation of IAA to amino acids. However, the high degree of functional redundancy among them has hampered thorough analysis of their roles in plant development. In this work, we generated an Arabidopsis gh3.1,2,3,4,5,6,9,17 (gh3oct) mutant to knock out the group II GH3 pathway. The gh3oct plants had an elaborated root architecture, showed an increased tolerance to different osmotic stresses, including an IAA-dependent tolerance to salinity, and were more tolerant to water deficit. Indole-3-acetic acid metabolite quantification in gh3oct plants suggested the existence of additional GH3-like enzymes in IAA metabolism. Moreover, our data suggested that 2-oxindole-3-acetic acid production depends, at least in part, on the GH3 pathway. Targeted stress-hormone analysis further suggested involvement of abscisic acid in the differential response to salinity of gh3oct plants. Taken together, our data provide new insights into the roles of group II GH3s in IAA metabolism and hormone-regulated plant development.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000827" target="_blank" >EF16_019/0000827: Plants as a tool for sustainable global development</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    New Phytologist

  • ISSN

    0028-646X

  • e-ISSN

    1469-8137

  • Volume of the periodical

    235

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    263-275

  • UT code for WoS article

    000782841700001

  • EID of the result in the Scopus database

    2-s2.0-85128219703