All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle – The Origin of the Anydrophytes and Zygnematophyceae Split

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F22%3A00563478" target="_blank" >RIV/61389030:_____/22:00563478 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/22:10442294 RIV/00216224:14310/22:00125504

  • Result on the web

    <a href="https://doi.org/10.3389/fpls.2021.735020" target="_blank" >https://doi.org/10.3389/fpls.2021.735020</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fpls.2021.735020" target="_blank" >10.3389/fpls.2021.735020</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle – The Origin of the Anydrophytes and Zygnematophyceae Split

  • Original language description

    For tens of millions of years (Ma), the terrestrial habitats of Snowball Earth during the Cryogenian period (between 720 and 635 Ma before present–Neoproterozoic Era) were possibly dominated by global snow and ice cover up to the equatorial sublimative desert. The most recent time-calibrated phylogenies calibrated not only on plants but on a comprehensive set of eukaryotes indicate that within the Streptophyta, multicellular charophytes (Phragmoplastophyta) evolved in the Mesoproterozoic to the early Neoproterozoic. At the same time, Cryogenian is the time of the likely origin of the common ancestor of Zygnematophyceae and Embryophyta and later, also of the Zygnematophyceae–Embryophyta split. This common ancestor is proposed to be called Anydrophyta, here, we use anydrophytes. Based on the combination of published phylogenomic studies and estimated diversification time comparisons, we deem it highly likely that anydrophytes evolved in response to Cryogenian cooling. Also, later in the Cryogenian, secondary simplification of multicellular anydrophytes and loss of flagella resulted in Zygnematophyceae diversification as an adaptation to the extended cold glacial environment. We propose that the Marinoan geochemically documented expansion of first terrestrial flora has been represented not only by Chlorophyta but also by Streptophyta, including the anydrophytes, and later by Zygnematophyceae, thriving on glacial surfaces until today. It is possible that multicellular early Embryophyta survived in less abundant (possibly relatively warmer) refugia, relying more on mineral substrates, allowing the retention of flagella-based sexuality. The loss of flagella and sexual reproduction by conjugation evolved in Zygnematophyceae and zygomycetous fungi during the Cryogenian in a remarkably convergent way. Thus, we support the concept that the important basal cellular adaptations to terrestrial environments were exapted in streptophyte algae for terrestrialization and propose that this was stimulated by the adaptation to glacial habitats dominating the Cryogenian Snowball Earth. Including the glacial lifestyle when considering the rise of land plants increases the parsimony of connecting different ecological, phylogenetic, and physiological puzzles of the journey from aquatic algae to terrestrial floras.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Plant Science

  • ISSN

    1664-462X

  • e-ISSN

    1664-462X

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    JAN 27

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

    735020

  • UT code for WoS article

    000753483300001

  • EID of the result in the Scopus database

    2-s2.0-85124525172