RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389030%3A_____%2F22%3A00564399" target="_blank" >RIV/61389030:_____/22:00564399 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/22:73616706
Result on the web
<a href="https://doi.org/10.1073/pnas.2121058119" target="_blank" >https://doi.org/10.1073/pnas.2121058119</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1073/pnas.2121058119" target="_blank" >10.1073/pnas.2121058119</a>
Alternative languages
Result language
angličtina
Original language name
RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis
Original language description
Plant cell growth responds rapidly to various stimuli, adapting architecture to environmental changes. Two major endogenous signals regulating growth are the phytohormone auxin and the secreted peptides rapid alkalinization factors (RALFs). Both trigger very rapid cellular responses and also exert long-term effects [Du et al., Annu. Rev. Plant Biol. 71, 379–402 (2020), Blackburn et al., Plant Physiol. 182, 1657–1666 (2020)]. However, the way, in which these distinct signaling pathways converge to regulate growth, remains unknown. Here, using vertical confocal microscopy combined with a microfluidic chip, we addressed the mechanism of RALF action on growth. We observed correlation between RALF1-induced rapid Arabidopsis thaliana root growth inhibition and apoplast alkalinization during the initial phase of the response, and revealed that RALF1 reversibly inhibits primary root growth through apoplast alkalinization faster than within 1 min. This rapid apoplast alkalinization was the result of RALF1-induced net H+ influx and was mediated by the receptor FERONIA (FER). Furthermore, we investigated the cross-talk between RALF1 and the auxin signaling pathways during root growth regulation. The results showed that RALF-FER signaling triggered auxin signaling with a delay of approximately 1 h by up-regulating auxin biosynthesis, thus contributing to sustained RALF1-induced growth inhibition. This biphasic RALF1 action on growth allows plants to respond rapidly to environmental stimuli and also reprogram growth and development in the long term.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
<a href="/en/project/EF16_019%2F0000827" target="_blank" >EF16_019/0000827: Plants as a tool for sustainable global development</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the National Academy of Sciences of the United States of America
ISSN
0027-8424
e-ISSN
—
Volume of the periodical
119
Issue of the periodical within the volume
31
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
e2121058119
UT code for WoS article
000881496900002
EID of the result in the Scopus database
2-s2.0-85135292745