Stochastic Algorithms in Nonlinear Regression
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F00%3A00000034" target="_blank" >RIV/61988987:17310/00:00000034 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Stochastic Algorithms in Nonlinear Regression
Original language description
This paper deals with the use of two stochastic algorithms (modified controlled random search and evolutionary search) in estimating the parameters of nonlinear regression models. The algorithms are experimentally tested on a set of the well-known taskschosen insuch way that most classical techniques based on objective function derivatives fail while treating them. The basic features of the algorithms (rate of convergence and reliability) as wel as their applicability to nonlinear regression models arediscussed in more detail
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA402%2F00%2F1165" target="_blank" >GA402/00/1165: Modelling of the Regional Labour Market Development</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Statistics & Data Analysis
ISSN
0167-9473
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
13
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—