Normal Forms for Fuzzy Relations and their Contribution to Universal Approximation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F03%3A00000045" target="_blank" >RIV/61988987:17310/03:00000045 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Normal Forms for Fuzzy Relations and their Contribution to Universal Approximation
Original language description
This paper continues the investigation of approximating properties of generalized normal forms in fuzzy logic. The problem is formalized and solved algebraically. Normal forms are considered in two variants: infinite and finite. It is proved that inf inite normal forms are universal representation formulas whereas finite normal forms are universal approximation formulas for extensional functions. The estimation of the quality of approximation is suggested. Moreover, functions which can be precis ely represented by the discrete normal forms are considered.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1187301" target="_blank" >IAA1187301: Theory of Fuzzy Functions and Their Representation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Intelligent Systems for Information Processing: From Representation to Applications
ISBN
0-444-51379-5
Number of pages of the result
12
Pages from-to
381-392
Number of pages of the book
—
Publisher name
Elsevier
Place of publication
Amsterdam
UT code for WoS chapter
—