Primitive roots and quadratic non-residues
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F11%3AA13016MS" target="_blank" >RIV/61988987:17310/11:A13016MS - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Primitive roots and quadratic non-residues
Original language description
It was shown by C. Hooley that Artin?s conjecture on primitive roots is a consequence of Riemann Hypothesis for Dedekind zeta-functions for Kummer extensions, and later K. R. Matthews generalized this, obtaining a formula for the density of the set of primes for which ?nitely many given integers are primitive roots. In this paper the same kind of Riemann Hypothesis is used to deduce a formula for the density of the set of primes p for which the given odd integers b1, b2, . . . , bm are quadratic residues, and given odd integers {a1, a2, . . . , an} (with ai not= bj ) are primitive roots.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACTA ARITHMETICA
ISSN
0065-1036
e-ISSN
—
Volume of the periodical
149
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
10
Pages from-to
161-170
UT code for WoS article
—
EID of the result in the Scopus database
—