All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Normal Numbers and Cantor Expansions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F14%3AA15018W5" target="_blank" >RIV/61988987:17310/14:A15018W5 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Normal Numbers and Cantor Expansions

  • Original language description

    A real number is called normal if every block of digits in its expansion occurs with the same frequency. A famous result of Borel is that almost every number is normal. We extend the definition of normal numbers to the case of Cantor series. The main result of this paper is that under some condition almost every number is normal in the new sense.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F12%2F2351" target="_blank" >GAP201/12/2351: Distribution and metric properties of number sequences and their applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Uniform Distribution Theory

  • ISSN

    1336-913X

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    AT - AUSTRIA

  • Number of pages

    9

  • Pages from-to

    93-101

  • UT code for WoS article

  • EID of the result in the Scopus database