Normal Numbers and Cantor Expansions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F14%3AA15018W5" target="_blank" >RIV/61988987:17310/14:A15018W5 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Normal Numbers and Cantor Expansions
Original language description
A real number is called normal if every block of digits in its expansion occurs with the same frequency. A famous result of Borel is that almost every number is normal. We extend the definition of normal numbers to the case of Cantor series. The main result of this paper is that under some condition almost every number is normal in the new sense.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F2351" target="_blank" >GAP201/12/2351: Distribution and metric properties of number sequences and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Uniform Distribution Theory
ISSN
1336-913X
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
2
Country of publishing house
AT - AUSTRIA
Number of pages
9
Pages from-to
93-101
UT code for WoS article
—
EID of the result in the Scopus database
—