ECG prediction based on classification via neural networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F14%3AA1501BB9" target="_blank" >RIV/61988987:17310/14:A1501BB9 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ECG prediction based on classification via neural networks
Original language description
The article deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, pre-process them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutu-ally compared in the conclusion.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Intelligent Systems and Computing
ISBN
978-3-319-07400-9
ISSN
2194-5357
e-ISSN
—
Number of pages
10
Pages from-to
271-280
Publisher name
Springer International Publishing
Place of publication
London
Event location
Ostrava
Event date
Jun 23, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—