MI Groups: New Approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F14%3AA1501BPY" target="_blank" >RIV/61988987:17310/14:A1501BPY - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
MI Groups: New Approach
Original language description
The notion of fuz-group introduced in cite{HolcStep_IEEE12_partI}, cite{HolcStep_IEEE12_partII} and later on elaborated in cite{HolcStep:FSS12} is redefined and its structure analysed. In our approach, the role of the ``Many Identities'' set is replaced by an involutive anti-automorphism. Every finite fuz-group coincides with some classical group, whilst infinite fuz-groups comprise two parts: a group part and a semigroup part.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Information Processing and Management of Uncertainty in Knowledge-Based Systems
ISBN
978-3-319-08854-9
ISSN
1865-0929
e-ISSN
—
Number of pages
10
Pages from-to
274-283
Publisher name
Springer
Place of publication
—
Event location
Montpellier, Francie
Event date
Jul 15, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—