How many torsionless affine connections exist in general dimension?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F16%3AA1601G4W" target="_blank" >RIV/61988987:17310/16:A1601G4W - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/16:10333632
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
How many torsionless affine connections exist in general dimension?
Original language description
We study the question how many real analytic torsion-free affine connections exist locally on a smooth manifold M of dimension n. The families of torsion-free connections with skew-symmetric Ricci tensor and those with symmetric Ricci tensor are determined in terms of the number of arbitrary functions of n variables.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-02476S" target="_blank" >GA14-02476S: Variations, geometry and physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ADV GEOM
ISSN
1615-715X
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
6
Pages from-to
71-76
UT code for WoS article
—
EID of the result in the Scopus database
—