All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tangent bundle geometry induced by second order partial differential equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F16%3AA1701JD2" target="_blank" >RIV/61988987:17310/16:A1701JD2 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tangent bundle geometry induced by second order partial differential equations

  • Original language description

    We show how the tangent bundle decomposition generated by a system of ordinary differential equations may be generalized to the case of a system of second order PDEs ?of connection type?. Whereas for ODEs the decomposition is intrinsic, for PDEs it is necessary to specify a closed 1-form on the manifold of independent variables, together with a transverse local vector field. The resulting decomposition provides several natural curvature operators. We give three examples to indicate possible applications of this theory.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-02476S" target="_blank" >GA14-02476S: Variations, geometry and physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    J MATH PURE APPL

  • ISSN

    0021-7824

  • e-ISSN

  • Volume of the periodical

    106

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    23

  • Pages from-to

    296-318

  • UT code for WoS article

    000380077200004

  • EID of the result in the Scopus database

    2-s2.0-84959917786