Tangent bundle geometry induced by second order partial differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F16%3AA1701JD2" target="_blank" >RIV/61988987:17310/16:A1701JD2 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Tangent bundle geometry induced by second order partial differential equations
Original language description
We show how the tangent bundle decomposition generated by a system of ordinary differential equations may be generalized to the case of a system of second order PDEs ?of connection type?. Whereas for ODEs the decomposition is intrinsic, for PDEs it is necessary to specify a closed 1-form on the manifold of independent variables, together with a transverse local vector field. The resulting decomposition provides several natural curvature operators. We give three examples to indicate possible applications of this theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-02476S" target="_blank" >GA14-02476S: Variations, geometry and physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
J MATH PURE APPL
ISSN
0021-7824
e-ISSN
—
Volume of the periodical
106
Issue of the periodical within the volume
2
Country of publishing house
FR - FRANCE
Number of pages
23
Pages from-to
296-318
UT code for WoS article
000380077200004
EID of the result in the Scopus database
2-s2.0-84959917786