All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lagrangian and Hamiltonian Duality

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F16%3AA1701JD4" target="_blank" >RIV/61988987:17310/16:A1701JD4 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lagrangian and Hamiltonian Duality

  • Original language description

    We propose a setting for De Donder?Hamilton field theory in jet bundles, generalizing the usual multisymplectic formalism. Using a reformulation of Hamilton theory for the family of local Lagrangians related to a global Euler?Lagrange form, we construct a dual Hamiltonian bundle and corresponding Legendre maps, linking a Lagrangian system on a jet bundle with a canonical Hamiltonian system on the affine dual. Our approach significantly extends the family of regular variational problems that can be treated directly within a dual Hamiltonian formalism, thus avoiding the necessity to use the Dirac constraint formalism.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA201%2F09%2F0981" target="_blank" >GA201/09/0981: Global Analysis and the Geometry of Fibred Spaces</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Sciences

  • ISSN

    1072-3374

  • e-ISSN

  • Volume of the periodical

    218

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

    813-819

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85028279714