Lagrangian and Hamiltonian Duality
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F16%3AA1701JD4" target="_blank" >RIV/61988987:17310/16:A1701JD4 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Lagrangian and Hamiltonian Duality
Original language description
We propose a setting for De Donder?Hamilton field theory in jet bundles, generalizing the usual multisymplectic formalism. Using a reformulation of Hamilton theory for the family of local Lagrangians related to a global Euler?Lagrange form, we construct a dual Hamiltonian bundle and corresponding Legendre maps, linking a Lagrangian system on a jet bundle with a canonical Hamiltonian system on the affine dual. Our approach significantly extends the family of regular variational problems that can be treated directly within a dual Hamiltonian formalism, thus avoiding the necessity to use the Dirac constraint formalism.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0981" target="_blank" >GA201/09/0981: Global Analysis and the Geometry of Fibred Spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Sciences
ISSN
1072-3374
e-ISSN
—
Volume of the periodical
218
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
813-819
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85028279714