Quadratic forms representing pth terms of Lucas sequences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F17%3AA1801K54" target="_blank" >RIV/61988987:17310/17:A1801K54 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jnt.2016.11.021" target="_blank" >http://dx.doi.org/10.1016/j.jnt.2016.11.021</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jnt.2016.11.021" target="_blank" >10.1016/j.jnt.2016.11.021</a>
Alternative languages
Result language
angličtina
Original language name
Quadratic forms representing pth terms of Lucas sequences
Original language description
We prove that if {An}n≥0 is any Lucas sequence and p is any prime, then 4Ap admits a representation by one of two quadratic forms according to the residue class of p modulo 4.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-02804S" target="_blank" >GA17-02804S: Properties of number sequences and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
J NUMBER THEORY
ISSN
0022-314X
e-ISSN
1096-1658
Volume of the periodical
175
Issue of the periodical within the volume
June
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
134-139
UT code for WoS article
000394724200009
EID of the result in the Scopus database
2-s2.0-85009216515