All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Canonical Number Systems Over Imaginary Quadratic Euclidean Domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F17%3AA1801R9U" target="_blank" >RIV/61988987:17310/17:A1801R9U - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4064/cm6728-12-2015" target="_blank" >http://dx.doi.org/10.4064/cm6728-12-2015</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/cm6728-12-2015" target="_blank" >10.4064/cm6728-12-2015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Canonical Number Systems Over Imaginary Quadratic Euclidean Domains

  • Original language description

    We investigate canonical number systems over imaginary quadratic Euclidean domains. We define a canonical digit set in a uniform way. Linear ECNS polynomials are characterized completely. We prove that for every degree there are infinitely many ECNS polynomials. As a byproduct we give a sufficient condition for a polynomial to be symmetric-CNS.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    COLLOQUIUM MATHEMATICUM

  • ISSN

    0010-1354

  • e-ISSN

    1730-6302

  • Volume of the periodical

    146

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    PL - POLAND

  • Number of pages

    22

  • Pages from-to

    165-186

  • UT code for WoS article

    000394113200002

  • EID of the result in the Scopus database

    2-s2.0-85015363359