Vertical symmetries of Cartan geometries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F17%3AA210287S" target="_blank" >RIV/61988987:17310/17:A210287S - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0926224517300499?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0926224517300499?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.difgeo.2017.03.022" target="_blank" >10.1016/j.difgeo.2017.03.022</a>
Alternative languages
Result language
angličtina
Original language name
Vertical symmetries of Cartan geometries
Original language description
Elie Cartan's 'espaces generalizes' are, intuitively, curved geometries where the geometrical structure is that of a flat Klein geometry (a homogeneous space of a group) being rolled around a curved manifold without slipping or twisting. In modern terminology we may think of such a Cartan geometry as a fibre bundle with a means of lifting curves in the base manifold to curves in the Lie groupoid of structure-preserving fibre maps. The infinitesimal geometry will then be the Lie algebroid of certain projectable vector field on the fibre bundle, together with a horizontal lift to represent the connection. This paper considers symmetries of these structures, and explains why any vertical symmetry (projecting to the identity on the base manifold of the bundle) or any vertical infinitesimal symmetry (projecting to zero) must necessarily be trivial.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-02476S" target="_blank" >GA14-02476S: Variations, geometry and physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS
ISSN
0926-2245
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
October
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
165-174
UT code for WoS article
000412256400016
EID of the result in the Scopus database
2-s2.0-85017103481