Arithmetic properties of coefficients of L-functions of elliptic curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F18%3AA1901XZT" target="_blank" >RIV/61988987:17310/18:A1901XZT - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00605-018-1175-x" target="_blank" >http://dx.doi.org/10.1007/s00605-018-1175-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00605-018-1175-x" target="_blank" >10.1007/s00605-018-1175-x</a>
Alternative languages
Result language
angličtina
Original language name
Arithmetic properties of coefficients of L-functions of elliptic curves
Original language description
Let n = 1 ann -s be the L-series of an elliptic curve E defined over the rationals without complex multiplication. In this paper, we present certain similarities between the arithmetic properties of the coefficients {an}8 n= 1 and Euler's totient function.(n). Furthermore, we prove that both the set of n such that the regular polygon with | an| sides is ruler-and-compass constructible, and the set of n such that n-an + 1 =.(n) have asymptotic density zero. Finally, we improve a bound of Luca and Shparlinski on the counting function of elliptic pseudoprimes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-02804S" target="_blank" >GA17-02804S: Properties of number sequences and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MONATSHEFTE FUR MATHEMATIK
ISSN
0026-9255
e-ISSN
1436-5081
Volume of the periodical
187
Issue of the periodical within the volume
2
Country of publishing house
AT - AUSTRIA
Number of pages
27
Pages from-to
247-273
UT code for WoS article
000443569700004
EID of the result in the Scopus database
2-s2.0-85045056663