The Lagrangian Order-Reduction Theorem in Field Theories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F18%3AA1901Z2S" target="_blank" >RIV/61988987:17310/18:A1901Z2S - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00220-018-3129-5" target="_blank" >http://dx.doi.org/10.1007/s00220-018-3129-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00220-018-3129-5" target="_blank" >10.1007/s00220-018-3129-5</a>
Alternative languages
Result language
angličtina
Original language name
The Lagrangian Order-Reduction Theorem in Field Theories
Original language description
It is known that for every system of variational second order PDEs affine in second derivatives the Tonti Lagrangian is locally reducible to an equivalent first order Lagrangian (Order reduction Theorem). In this paper, a new proof is presented, based on investigation of closed forms related with variational equations, and an explicit formula for the first order Lagrangians arising by order reduction is found. The presented approach extends and completes the Order reduction Theorem by a geometric content and physical meaning of order reducibility: all variational second order PDEs affine in second derivatives admit a first-order covariant Hamiltonian formulation (Hamilton-De Donder equations), i.e. (under certain regularity conditions) carry a multisymplectic structure which is determined directly from the Euler-Lagrange expressions
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMMUN MATH PHYS
ISSN
0010-3616
e-ISSN
1432-0916
Volume of the periodical
362
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
107-128
UT code for WoS article
000440111100003
EID of the result in the Scopus database
2-s2.0-85044950046