All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Lagrangians with reduced-order Euler–Lagrange equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F18%3AA20022E8" target="_blank" >RIV/61988987:17310/18:A20022E8 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.emis.de/journals/SIGMA/2018/089/sigma18-089.pdf" target="_blank" >https://www.emis.de/journals/SIGMA/2018/089/sigma18-089.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3842/SIGMA.2018.089" target="_blank" >10.3842/SIGMA.2018.089</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Lagrangians with reduced-order Euler–Lagrange equations

  • Original language description

    If a Lagrangian defining a variational problem has order k then its Euler-Lagrange equations generically have order 2k. This paper considers the case where the Euler-Lagrange equations have order strictly less than 2k, and shows that in such a case the Lagrangian must be a polynomial in the highest-order derivative variables, with a specific upper bound on the degree of the polynomial. The paper also provides an explicit formulation, derived from a geometrical construction, of a family of such k-th order Lagrangians, and it is conjectured that all such Lagrangians arise in this way.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

  • ISSN

    1815-0659

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    Srpen

  • Country of publishing house

    UA - UKRAINE

  • Number of pages

    13

  • Pages from-to

    089

  • UT code for WoS article

    000443332100001

  • EID of the result in the Scopus database

    2-s2.0-85052739793