On partial limits of sequences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA200212F" target="_blank" >RIV/61988987:17310/19:A200212F - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0165011419301083" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0165011419301083</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2019.01.013" target="_blank" >10.1016/j.fss.2019.01.013</a>
Alternative languages
Result language
angličtina
Original language name
On partial limits of sequences
Original language description
Limit of sequences is a basic concept in mathematical analysis. In this paper we study it in more details using another basic concept of analysis, measure on sets of positive integers. A key role in our considerations is played by the concept of a degree of convergence of a given sequence to a given point with respect to a particular measure on the set of positive integers, as a number in interval $[0,1]$. We study its properties depending on properties of the chosen measure. It appears that standard limits and their known generalizations (convergence with respect to a filter or ideal) are extremal special cases in our approach.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-02804S" target="_blank" >GA17-02804S: Properties of number sequences and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
375
Issue of the periodical within the volume
Listopad
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
179-190
UT code for WoS article
000484357800008
EID of the result in the Scopus database
2-s2.0-85060874549