All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On partial limits of sequences

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA200212F" target="_blank" >RIV/61988987:17310/19:A200212F - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0165011419301083" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0165011419301083</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fss.2019.01.013" target="_blank" >10.1016/j.fss.2019.01.013</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On partial limits of sequences

  • Original language description

    Limit of sequences is a basic concept in mathematical analysis. In this paper we study it in more details using another basic concept of analysis, measure on sets of positive integers. A key role in our considerations is played by the concept of a degree of convergence of a given sequence to a given point with respect to a particular measure on the set of positive integers, as a number in interval $[0,1]$. We study its properties depending on properties of the chosen measure. It appears that standard limits and their known generalizations (convergence with respect to a filter or ideal) are extremal special cases in our approach.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-02804S" target="_blank" >GA17-02804S: Properties of number sequences and their applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fuzzy sets and Systems

  • ISSN

    0165-0114

  • e-ISSN

  • Volume of the periodical

    375

  • Issue of the periodical within the volume

    Listopad

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    179-190

  • UT code for WoS article

    000484357800008

  • EID of the result in the Scopus database

    2-s2.0-85060874549