All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Numerical methods for estimating the tuning parameter in penalized least squares problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA20023EA" target="_blank" >RIV/61988987:17310/19:A20023EA - isvavai.cz</a>

  • Alternative codes found

    RIV/61988987:17310/22:A2302EC6

  • Result on the web

    <a href="https://www.tandfonline.com/doi/full/10.1080/03610918.2019.1676436" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/03610918.2019.1676436</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03610918.2019.1676436" target="_blank" >10.1080/03610918.2019.1676436</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Numerical methods for estimating the tuning parameter in penalized least squares problems

  • Original language description

    The solution of the penalized least squares problems depends on a tuning parameter. A popular tool for specifying the tuning parameter is the generalized cross-validation (GCV). In this work, we utilize estimates for the GCV function whose minimizers can lead to the determination of the tuning parameter. The selection of an efficient estimate depends on an appropriately defined index of proximity. Bounds and specific values are derived for this index and a thorough study proves that the proposed one-term estimate suits perfectly to statistical models with high correlated variables. This is confirmed through simulation tests for several datasets.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Statistics - Simulation and Computation

  • ISSN

    0361-0918

  • e-ISSN

    1532-4141

  • Volume of the periodical

  • Issue of the periodical within the volume

    Říjen

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

  • UT code for WoS article

    000491387100001

  • EID of the result in the Scopus database

    2-s2.0-85074442563