Perfect squares as concatenation of consecutive integers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA2002447" target="_blank" >RIV/61988987:17310/19:A2002447 - isvavai.cz</a>
Result on the web
<a href="https://www.tandfonline.com/doi/full/10.1080/00029890.2019.1632628" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/00029890.2019.1632628</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/00029890.2019.1632628" target="_blank" >10.1080/00029890.2019.1632628</a>
Alternative languages
Result language
angličtina
Original language name
Perfect squares as concatenation of consecutive integers
Original language description
We find an infinite family of positive integers a such that concatenating a and a - 1 in base 10 (from left to right) results in a number that is a perfect square and estimates for such concatenations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-02804S" target="_blank" >GA17-02804S: Properties of number sequences and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
AM MATH MON
ISSN
0002-9890
e-ISSN
—
Volume of the periodical
126
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
728-734
UT code for WoS article
000487065600006
EID of the result in the Scopus database
2-s2.0-85073227036