x-coordinates of Pell equations which are Tribonacci numbers II
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA200244G" target="_blank" >RIV/61988987:17310/19:A200244G - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs10998-018-0264-x" target="_blank" >https://link.springer.com/article/10.1007%2Fs10998-018-0264-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10998-018-0264-x" target="_blank" >10.1007/s10998-018-0264-x</a>
Alternative languages
Result language
angličtina
Original language name
x-coordinates of Pell equations which are Tribonacci numbers II
Original language description
For an integer d >= 2 which is not a square, we show that there is at most one value of the positive integer x participating in the Pell equation x(2) - dy(2) = +/- 4 which is a Tribonacci number, with a few exceptions that we completely characterize.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-02804S" target="_blank" >GA17-02804S: Properties of number sequences and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PERIODICA MATHEMATICA HUNGARICA
ISSN
0031-5303
e-ISSN
—
Volume of the periodical
79
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
157-167
UT code for WoS article
000492157300002
EID of the result in the Scopus database
2-s2.0-85055925561