On Relation between Asymptotic and Abel Densities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F20%3AA21023JU" target="_blank" >RIV/61988987:17310/20:A21023JU - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022314X19303397" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022314X19303397</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jnt.2019.09.007" target="_blank" >10.1016/j.jnt.2019.09.007</a>
Alternative languages
Result language
angličtina
Original language name
On Relation between Asymptotic and Abel Densities
Original language description
A natural method how to measure sets of natural numbers is the asymptotic density which is a special case of weighted densities. These densities are based on the Riesz summation method. A completely different approach is the Abel summation method. This leads to the concept of the Abel density. In this paper we prove estimates of the values of the lower and upper Abel densities, depending on values of the lower and upper asymptotic densities.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-02804S" target="_blank" >GA17-02804S: Properties of number sequences and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
J NUMBER THEORY
ISSN
0022-314X
e-ISSN
—
Volume of the periodical
209
Issue of the periodical within the volume
April
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
451-466
UT code for WoS article
000510315400021
EID of the result in the Scopus database
2-s2.0-85074392610