Analytical inequalities in fractional calculus
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F20%3AA21025Q0" target="_blank" >RIV/61988987:17310/20:A21025Q0 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Analytical inequalities in fractional calculus
Original language description
The main motivation for writing this book is to present some aspects of generalisations, refinements, and variants of famous Hardy, Opial and related inequalities involving kernels. Namely, integral operators with general non-negative kernel on measure spaces with positive $sigma$-finite measure are considered and some new weighted Hardy type inequalities for convex functions and refinements of weighted Hardy type inequalities for super-quadratic functions are obtained. Particularly we have consider Riemann Liouville fractional integral, Hilfer fractional derivative, fractional integral operator which contains generalized Mittag-Leffler functions in the kernel, generalized fractional integral operator with Gauss hypergeometric function, Widder derivative and linear differential operator. Moreover, some refinements of weighted Hardy and Opial type inequalities for convex functions and new refinements of discrete Hardy type inequalities are presented.
Czech name
—
Czech description
—
Classification
Type
B - Specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
978-620-0-48242-6
Number of pages
316
Publisher name
LAMBERT Academic Publishing
Place of publication
—
UT code for WoS book
—