All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mixed metal oxides in synergy at nanoscale: Electrospray induced porosity of in situ grown film electrode for use in electrochemical capacitor

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F20%3AA2302HRW" target="_blank" >RIV/61988987:17310/20:A2302HRW - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000536481000016" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000536481000016</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mixed metal oxides in synergy at nanoscale: Electrospray induced porosity of in situ grown film electrode for use in electrochemical capacitor

  • Original language description

    A heterogeneous film electrode with mixed metal oxides of nickel and cobalt constituting the active layer is developed by first electrospraying metal acetate precursors on nickel foam, followed by calcination. The formation of unique cubic phases of nickel oxide (NiO) and cobalt oxide (Co3O4) are confirmed through X-ray diffraction. The growth of two oxides in nanoscale is confirmed from high-resolution transmission electron microscopy, whereas the images from scanning electron microscope show synergistic growth leading to three dimensional porosity. The synergy is further demonstrated from the areal capacity of 267 mC cm(-2) at 1 mA cm(-2) for mixed oxide electrode, which is much higher than the respective values for pure NiO film (124 mC cm(-2)), and Co3O4 film (174 mC cm(-2)) electrodes. The faradaic behaviour of Co3O4 film electrode in cyclic voltammetry and chronopotentiometry scans is significantly modified to a more capacitive charge transfer due to the presence of NiO, resulting in better rate capability. The electrochemical performance of film electrodes is augmented utilizing hybrid mode, where in situ grown carbon film based on electrospray coating of resorcinol formaldehyde on nickel foam serves as counter electrode. The hybrid cell delivers specific energy and specific power to the extent of 22.7 Wh kg(-1), and 2.8 kW kg(-1) respectively, with the capacitance retention of 89% after 2000 cycles at 10 mA cm(-2). (C) 2020 Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10400 - Chemical sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ELECTROCHIM ACTA

  • ISSN

    0013-4686

  • e-ISSN

  • Volume of the periodical

  • Issue of the periodical within the volume

    136277

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    000536481000016

  • EID of the result in the Scopus database