All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cardiolipin, Non-Bilayer Structures and Mitochondrial Bioenergetics: Relevance to Cardiovascular Disease

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA2202A1F" target="_blank" >RIV/61988987:17310/21:A2202A1F - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-4409/10/7/1721" target="_blank" >https://www.mdpi.com/2073-4409/10/7/1721</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/cells10071721" target="_blank" >10.3390/cells10071721</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cardiolipin, Non-Bilayer Structures and Mitochondrial Bioenergetics: Relevance to Cardiovascular Disease

  • Original language description

    The present review is an attempt to conceptualize a contemporary understanding about the roles that cardiolipin, a mitochondrial specific conical phospholipid, and non-bilayer structures, predominantly found in the inner mitochondrial membrane (IMM), play in mitochondrial bioenergetics. This review outlines the link between changes in mitochondrial cardiolipin concentration and changes in mitochondrial bioenergetics, including changes in the IMM curvature and surface area, cristae density and architecture, efficiency of electron transport chain (ETC), interaction of ETC proteins, oligomerization of respiratory complexes, and mitochondrial ATP production. A relationship between cardiolipin decline in IMM and mitochondrial dysfunction leading to various diseases, including cardiovascular diseases, is thoroughly presented. Particular attention is paid to the targeting of cardiolipin by Szeto–Schiller tetrapeptides, which leads to rejuvenation of important mitochondrial activities in dysfunctional and aging mitochondria. The role of cardiolipin in triggering non-bilayer structures and the functional roles of non-bilayer structures in energy-converting membranes are reviewed. The latest studies on non-bilayer structures induced by cobra venom peptides are examined in model and mitochondrial membranes, including studies on how non-bilayer structures modulate mitochondrial activities. A mechanism by which non-bilayer compartments are formed in the apex of cristae and by which non-bilayer compartments facilitate ATP synthase dimerization and ATP production is also presented.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10610 - Biophysics

Result continuities

  • Project

    <a href="/en/project/GA19-13637S" target="_blank" >GA19-13637S: Roles of non-bilayer lipids and non-lamellar lipid phases in the structure, dynamics and function of plant thylakoid membranes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Cells

  • ISSN

    2073-4409

  • e-ISSN

    2073-4409

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    24

  • Pages from-to

    1-24

  • UT code for WoS article

    000676627100001

  • EID of the result in the Scopus database

    2-s2.0-85114079144