All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Recent technological and methodological advances for the investigation of landslide dams

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA2202DN5" target="_blank" >RIV/61988987:17310/21:A2202DN5 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0012825221001471" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0012825221001471</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.earscirev.2021.103646" target="_blank" >10.1016/j.earscirev.2021.103646</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Recent technological and methodological advances for the investigation of landslide dams

  • Original language description

    River-damming by landslides is a widespread phenomenon around the world. Recent advances in remote sensing technology and the rising commercial availability of their products enable the assemblage of increasingly more complete inventories and improve monitoring efforts. On the ground, multi-method dating campaigns enhance our understanding of the timelines of dam formation and failure. In comparison to single-dating methods, they reduce uncertainty by using different materials from the landslide deposit, facilitate the advantages of each method, and consider the deposit and the source area. They can pin dates on the time of lake drainage where backwater sediments are included in the dating campaign and thus inform about dam longevity. Geophysical methods provide non-invasive and rapid methods to investigate the properties and interior conditions of landslide dams. By identifying, e.g. evolving zones of weakness and saturation they can aid in the monitoring of a dam in addition to providing information on interior stratification for scientific research. To verify results from geophysical campaigns, and to add details of dam interior structures and geotechnical properties, knowledge of their sedimentology is essential. This information is gathered at sections from breached dams, other (partially) eroded landslide deposits, and through laboratory testing of sampled material. Combining the knowledge gained from all these methods with insights from blast-fill and embankment dam construction, physical and numerical modelling in multi-disciplinary research projects is the way forward in landslide dam research, assessment and monitoring. This review offers a broad, yet concise overview of the state-of-the-art in the aforementioned research fields. It completes the review of Fan et al. (2020) on the formation and impact on landslide dams.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10508 - Physical geography

Result continuities

  • Project

    <a href="/en/project/GA19-16013S" target="_blank" >GA19-16013S: Giant landslides in glacier foreland: missing story in the evolution of Patagonian Ice Sheet and related glacial lakes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Earth-Science Reviews

  • ISSN

    0012-8252

  • e-ISSN

    1872-6828

  • Volume of the periodical

    218

  • Issue of the periodical within the volume

    July

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    29

  • Pages from-to

    103646

  • UT code for WoS article

    000670182100001

  • EID of the result in the Scopus database