All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Copper and Silver Substituted MnO2 Nanostructures with Superior Photocatalytic and Antimicrobial Activity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA2302HRZ" target="_blank" >RIV/61988987:17310/21:A2302HRZ - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000743463100003" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000743463100003</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Copper and Silver Substituted MnO2 Nanostructures with Superior Photocatalytic and Antimicrobial Activity

  • Original language description

    In this article, visible-light-active binary metal doped Mn0.9Cu0.05Ag0.05O2 (MCAO) nanostructures were synthesized by a one-step co-precipitation method for superior antimicrobial and photocatalytic activities. For comparison, single metal doped Mn0.95Cu0.05O2 (MCO), Mn0.95Ag0.05O2 (MAO) nanostructures were also synthesized. Accompanied with the co-precipitation growth of the Cu and Ag in the MnO2 matrix, the binary metal doping not only influenced the crystal structure of MnO2, but also resulted in a remarkable improvement of the visible light activity and the prolonged separation of photoinduced carriers. The phase, morphology, and the chemical composition of the singly and binary doped MnO2 nanostructures were probed by reliable analytical methods, like PXRD (powder X-ray diffraction), FE-SEM (field emission scanning electron microscopy), and EDX (energy dispersive X-ray spectroscopy), respectively. Based on the assessment of the antibacterial and photocatalytic performance, it was observed that the Mn0.9Cu0.05Ag0.05O2 (MCAO) obtained a substantial improvement for different bacterial strains (S. aureus (G(+)), K. pneumonic (G(-)), and P. vulgaris (G(-))) disinfection and methylene blue (MB) degradation under solar irradiation, which was ascribed to delayed charge recombination as well as effective generation of reactive species (h(+), (O) over bar (2), and HO center dot). These results revealed that the binary metal doping in a metal oxide matrix could provide a novel strategy for development of multifunctional nanomaterials.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10400 - Chemical sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Ceramics International

  • ISSN

    0272-8842

  • e-ISSN

  • Volume of the periodical

  • Issue of the periodical within the volume

    5.3.2022

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000743463100003

  • EID of the result in the Scopus database