Nanostructured V2O5 and its Nanohybrid with MXene as an Efficient Electrode Material for Electrochemical Capacitor Applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA2302HS3" target="_blank" >RIV/61988987:17310/21:A2302HS3 - isvavai.cz</a>
Result on the web
<a href="https://reader.elsevier.com/reader/sd/pii/S0272884221031369?token=CE6DA204F9E93E7B5240DE41FFDEC38F0750B86A7F0E3CDDC10EB012FA43F18CB46CF85551AD76F31A823FF392BC8320&originRegion=eu-west-1&originCreation=20221215100705" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0272884221031369?token=CE6DA204F9E93E7B5240DE41FFDEC38F0750B86A7F0E3CDDC10EB012FA43F18CB46CF85551AD76F31A823FF392BC8320&originRegion=eu-west-1&originCreation=20221215100705</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Nanostructured V2O5 and its Nanohybrid with MXene as an Efficient Electrode Material for Electrochemical Capacitor Applications
Original language description
Vanadium pentoxide (V2O5) is an excellent electrode material for electrochemical capacitor (ECCs) applications, but its lower electrical conductivity is the primary obstacle that restricts its practical applications. This obstacle can be eliminated by forming its nanohybrid (NCs) with a highly capacitive and conductive matrix such as MXene. MXene is a new two-dimensional (2D) material with good electronic conductivity and a larger specific surface area, making it a very suitable substrate for composite formation. Unfortunately, the two-dimensional MXene sheets stacked quickly, limiting their specific surface area and charge/mass transport properties. Here we used the hydrothermal approach to fabricate V2O5 nanowires (NWs) and form their nanohybrid with MXene via the ultrasound route. To assess electrochemical suitability, the fabricated samples were loaded onto a carbon cloth (CC) and used as a working electrode in the half-cell configuration. The nanohybrid (V2O5/MXene) sample showed a good specific capacity (Csp) of 768 F/g (at 1 A/g) because of its greater surface area, hybrid composition, excellent electrical conductivity, and passive nanostructure. It also showed superior cyclic, electrochemical and mechanical capability and maintained a specific capacity of 93.3%, even after completion of 6000 GCD tests. In addition, the nanohybrid sample electrode also exhibits superb rate performance and lost only 14.4% of its initial specific capacity on increasing the applied current density from 1 to 5 A/g. There is no doubt that V2O5 NWs inter-stack between MXene nanosheets to develop effective interface interaction and suppress their stacking.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10400 - Chemical sciences
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Ceramics International
ISSN
0272-8842
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
6.12.2021
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
1-10
UT code for WoS article
000724660000004
EID of the result in the Scopus database
—