A formal analysis of generalized Peterson's syllogisms related to graded Peterson's cube
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AA2302CH5" target="_blank" >RIV/61988987:17310/22:A2302CH5 - isvavai.cz</a>
Result on the web
<a href="http://mdpi.com/2227-7390/10/6/906" target="_blank" >http://mdpi.com/2227-7390/10/6/906</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10060906" target="_blank" >10.3390/math10060906</a>
Alternative languages
Result language
angličtina
Original language name
A formal analysis of generalized Peterson's syllogisms related to graded Peterson's cube
Original language description
This publication builds on previous publications in which we constructed syntactic proofs of fuzzy Peterson's syllogisms related to the graded square of opposition. The aim of the publication is to formally be able to find syntactic proofs of fuzzy Peterson's logical syllogisms with forms of fuzzy intermediate quantifiers that form the graded Peterson's cube of opposition.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
—
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
28
Pages from-to
—
UT code for WoS article
000778259200001
EID of the result in the Scopus database
2-s2.0-85126739103