All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A formal analysis of generalized Peterson's syllogisms related to graded Peterson's cube

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AA2302CH5" target="_blank" >RIV/61988987:17310/22:A2302CH5 - isvavai.cz</a>

  • Result on the web

    <a href="http://mdpi.com/2227-7390/10/6/906" target="_blank" >http://mdpi.com/2227-7390/10/6/906</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math10060906" target="_blank" >10.3390/math10060906</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A formal analysis of generalized Peterson's syllogisms related to graded Peterson's cube

  • Original language description

    This publication builds on previous publications in which we constructed syntactic proofs of fuzzy Peterson's syllogisms related to the graded square of opposition. The aim of the publication is to formally be able to find syntactic proofs of fuzzy Peterson's logical syllogisms with forms of fuzzy intermediate quantifiers that form the graded Peterson's cube of opposition.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    28

  • Pages from-to

  • UT code for WoS article

    000778259200001

  • EID of the result in the Scopus database

    2-s2.0-85126739103