All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Are There Hidden Genes in DNA/RNA Vaccines?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AA2302EBC" target="_blank" >RIV/61988987:17310/22:A2302EBC - isvavai.cz</a>

  • Result on the web

    <a href="https://www.frontiersin.org/articles/10.3389/fimmu.2022.801915/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fimmu.2022.801915/full</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fimmu.2022.801915" target="_blank" >10.3389/fimmu.2022.801915</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Are There Hidden Genes in DNA/RNA Vaccines?

  • Original language description

    Due to the fast global spreading of the Severe Acute Respiratory Syndrome Coronavirus – 2 (SARS-CoV-2), prevention and treatment options are direly needed in order to control infection-related morbidity, mortality, and economic losses. Although drug and inactivated and attenuated virus vaccine development can require significant amounts of time and resources, DNA and RNA vaccines offer a quick, simple, and cheap treatment alternative, even when produced on a large scale. The spike protein, which has been shown as the most antigenic SARS-CoV-2 protein, has been widely selected as the target of choice for DNA/RNA vaccines. Vaccination campaigns have reported high vaccination rates and protection, but numerous unintended effects, ranging from muscle pain to death, have led to concerns about the safety of RNA/DNA vaccines. In parallel to these studies, several open reading frames (ORFs) have been found to be overlapping SARS-CoV-2 accessory genes, two of which, ORF2b and ORF-Sh, overlap the spike protein sequence. Thus, the presence of these, and potentially other ORFs on SARS-CoV-2 DNA/RNA vaccines, could lead to the translation of undesired proteins during vaccination. Herein, we discuss the translation of overlapping genes in connection with DNA/RNA vaccines. Two mRNA vaccine spike protein sequences, which have been made publicly-available, were compared to the wild-type sequence in order to uncover possible differences in putative overlapping ORFs. Notably, the Moderna mRNA-1273 vaccine sequence is predicted to contain no frameshifted ORFs on the positive sense strand, which highlights the utility of codon optimization in DNA/RNA vaccine design to remove undesired overlapping ORFs. Since little information is available on ORF2b or ORF-Sh, we use structural bioinformatics techniques to investigate the structure-function relationship of these proteins.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10607 - Virology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Immunology

  • ISSN

    1664-3224

  • e-ISSN

    1664-3224

  • Volume of the periodical

  • Issue of the periodical within the volume

    February

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    8

  • Pages from-to

    1-8

  • UT code for WoS article

    000760480300001

  • EID of the result in the Scopus database

    2-s2.0-85125172408