All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Electronic nature transition and magnetism creation in vacancy defected Ti2CO2 MXene under biaxial strain: DFTB+U study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AA2302GWT" target="_blank" >RIV/61988987:17310/22:A2302GWT - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1021/acsomega.2c05037" target="_blank" >http://dx.doi.org/10.1021/acsomega.2c05037</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsomega.2c05037" target="_blank" >10.1021/acsomega.2c05037</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Electronic nature transition and magnetism creation in vacancy defected Ti2CO2 MXene under biaxial strain: DFTB+U study

  • Original language description

    The structural, electronic, and magnetic properties of vacancy defect in Ti2CO2 MXene and the effect of strain have been investigated using the density functional tight-binding (DFTB) approach including spin-polarization with Hubbard onsite correction (DFTB + U). The band gap of pure Ti2CO2 is ∼1.3 eV, which decreases to ∼0.4 and ∼1.1 eV in the case of C- and O-vacancies, respectively, i.e., the semiconducting behavior is retained. In contrast, Ti2CO2 undergoes semiconductor-to-metal transition by the introduction of a single Ti-vacancy. This transition is the result of introduced localized states in the vicinity of the Fermi level by the vacancy. Both Ti- and O-vacancies have zero net magnetic moments. Interestingly, the nonmagnetic (NM) ground state of semiconducting Ti2CO2 turns into a magnetic semiconductor by introducing a C-vacancy with a magnetization of ∼2 μB/cell. Furthermore, we studied the effect of strain on the electronic structure and magnetic properties of Ti-, C-, and O-vacant Ti2CO2. The nature of the band gap in the presence of single O-vacancy remains indirect in both compression and tensile strain, and the size of the band gap decreases. Compression strain on Ti-vacant Ti2CO2 changes metal into a direct semiconductor, and the metallic character remains under tensile biaxial strain. In opposition, a semiconductor-to-metal transition occurs by applying a compressive biaxial strain on C-vacant Ti2CO2. We also find that the magnetism is preserved under tensile strain and suppressed under compression strain on VC-Ti2CO2. Moreover, we show that double C-vacancies maintain magnetism. Our findings provide important characteristics for the application of the most frequent MXene material and should motivate further investigations because experimentally achieved MXenes always contain point defects.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/GA21-28709S" target="_blank" >GA21-28709S: MXenes – Materials for Future-Generation Technology Applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Omega

  • ISSN

    2470-1343

  • e-ISSN

    2470-1343

  • Volume of the periodical

  • Issue of the periodical within the volume

    46

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    42221-42232

  • UT code for WoS article

    000885515100001

  • EID of the result in the Scopus database

    2-s2.0-85141981142